Optimization of a Roller Levelling Process for Al7001t9 Pipes with Finite Element Analysis and Taguchi Method

نویسندگان

  • H. Huh
  • J. H. Heo
  • H. W. Lee
چکیده

This paper is concerned with optimization of process parameters for a roller leveller that is an indispensable equipment to eliminate the undesirable curvature of a thin-walled aluminum pipe. Optimization of process parameters has been carried out for a multistaggered-type 14-roller leveller. A finite element model of a multi-staggered 14-roller leveller was constructed for analysis whose results were verified by experiments. The analysis is carried out with the fractional model and the Taguchi method for evaluation of the effect of process parameters such as the intermesh and the slanted angle of rollers. The response variable is set to the plastic strain along the pipe length. The optimum combination of process parameters is determined from the numerical result and confirmed by experiments. The comparison of the numerical result with the experimental one shows good coincidence for its validity and reliability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave Motion and Stop-Bands in Pipes with Helical Characteristics Using Wave Finite Element Analysis

Pipes are widely used in many industrial and mechanical applications and devices. Although there are many different constructions according to the specific application and device, these can show helical pattern, such as spiral pipes, wire-reinforced pipes/shells, spring-suspension, and so on. Theoretical modelling of wave propagation provides a prediction about the dynamic behavior, and it is f...

متن کامل

Using the Taguchi Method for Experimental and Numerical Investigations on the Square-Cup Deep-Drawing Process for Aluminum/Steel Laminated Sheets

The effects of input parameters on the square-cup deep-drawing process for a two-layer aluminum/steel laminated sheet were investigated. Each layer was 0.7 mm thick, and the input parameters covered in the investigation were punch nose radius (PR), die shoulder radius (DR), the clearance between a punch and die (CPD), blank holder force (BHF), and layer arrangement (LA). The effects of the inpu...

متن کامل

Analysis of Resistance Spot Welding Process Parameters Effect on the Weld Quality of Three-steel Sheets Used in Automotive Industry: Experimental and Finite Element Simulation

In the present research, the effects of spot-welding process parameters on the nugget diameter and electrode penetration depth of spot-welded joints were investigated. To achieve this, a spot-welded joint of three-thin sheet low carbon steels (same thicknesses of 0.8 mm) was simulated as an electerical-thermal-mechanical coupling of 3D finite element model. After validating the finite element s...

متن کامل

Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method

In the hot compression test friction has a detrimental influence on the flow stress through the process and therefore, correcting the deformation curve for real behavior is very important for both researchers and engineers. In this study, a series of compression tests were simulated using Abaqus software. In this study, it has been employed the Taguchi method to design experiments by the factor...

متن کامل

A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006